
Integrated Server Monitoring

System for automated supervision of computer servers

The Next Generation Monitoring

© Dipl. Inform. Wilhelm Buchholz‐

http://www.monitor-site.de

The system offers the following functions:

● Autonomous agents for Linux, Windows, AIX, Solaris, HP-UX, Mac OS X

● Different forms of the log file analysis, full integration of journalctl (systemd)
● Monitor scripts and correction scripts
● Filtering and display of SNMP-Traps

● Active monitoring of remote tcp ports
● Central Management Station with graphic (X11) control surface und web surface

● Multi-user ability
● Integrated data retention with dynamic store management and ring store

● Parallelism by multithreading, asynchronous processing
● Process display and status display at the Management Station

● Dynamic registration and heartbeat
● Filter functions to the difference display

● Forwarding of messages, automatic actions
● Central administration of the configuration files and administrative access to the nodes
● Encrypted communication with the agents over one port (tcp/udp)
● Both ipv4 as well as ipv6
● Program completely in C++

● Management Station for Linux 64 Bit
● Comfortable operation

This system, developed from many years of operating experience, is manageable, easy to in-
stall and operate. It has a bandwidth of a few dozen to several thousand servers (nodes), is
universally applicable and thus offering the best conditions for a wide audience. Due to the
multi-user capability it is also suitable for a large, enterprise’s division of labor.

http://www.monitor-site.de/

Contents
1. Introduction...1

2. Agents and result display..3

3. Replacement Mechanism (Format Statement)..8

4. Regular Expressions (Search Patterns)..10

5. SNMP-Traps (Trap Receiver)..11

6. Active Monitoring..14

7. Mass problem and data management..16

8. Agents for monitoring log files..18
 8.1 General log file analysis.. 21
 8.2 Multiple log file analysis (Unix)... 22
 8.3 Multiple recursive log file analysis (Unix)... 23

9. Agents for Standard Monitoring...24
 9.1 Unix... 24
 9.2 Windows... 26

10. Agents for Monitoring Scripts...27
 10.1 Unix.. 27
 10.2 Windows.. 29

11. Agent for Security (Unix)..30

12. Lifecheck (Heartbeat), Dynamic Registration..31

13. Configuring the agents, Command-Interface...32

14. User Management..34

15. The filter mechanism (Management Station)..34
 15.1 Pre filter mechanism... 34
 15.2 Filters Downstream (EcFilter).. 37
 15.3 Timefilter (Scheduler).. 37

16. Forwarding of Messages...39
 16.1 Forwarding by E-Mails... 39
 16.2 Export (Automatic Actions).. 40

17. History Data (Reports)..41

18. Background processes on Management Station..43

19. Copyrights..44

20. Figures (Examples)..45
 20.1 Example Standard Monitoring Unix.. 45
 20.2 Exaple Standard Monitoring Windows.. 46
 20.3 Example Process Monitoring... 47
 20.4 Example File System Monitoring.. 48
 20.5 Example Log File Analysis... 49
 20.6 Example SNMP-Traps... 50
 20.7 Example Command Interface... 51

1. Introduction

The term monitoring refers to the timely identification of relevant customer
problems on computer servers from a central control room, thus increasing
the availability of computer systems. The present system for real-time mon-
itoring is a counter project to the commercial frameworks of well-known
providers developed in nineteen-nineties.

These systems, you cannot even install without training or foreign help,
have a bloated complexity that is in no proportion to the operational re-
quirements also having a negative impact on the cost of networking. The
cost of acquisition, operation, learning curve, "consultants" can only be de-
scribed as adventurous. The use of such tools per se is a not-insignificant
problem.

Parallelly - also in response to the difficulties with the large commercial sys-
tems - a number of smaller tools (including open source) have emerged,
which may be a good low-price alternative with regard to purchase and op-
eration costs, but lacking functionality. This applies, for example, to a practi-
cal, content log file analysis, for which visual effects are less important than
gaining more leading (proactive) information about a server. It also refers to
a reasonable presentation of results combined with persistent data storage.
The capacity problem, i.e. the capacity of one central Management Station
for a certain number of clients is usually not solved. The system depends on
all monitored servers not just on one.

The presently existing systems tend to shift problems the provider should
actually solve on to the user, who is suddenly confronted with development
and/or design problems. Intended benefits had the reverse effect (for large
systems development and test environments are mandatory). The risk of
having to deal with a permanent "building site" with no actual profit is
great. The operating cost is far too high (which - by the way – contradicts
the basic idea of automation).

This system takes into account that today the tasks in server monitoring are
largely known. This includes the automatic and immediate analysis of a se-
ries of log files (even for individual applications) on a server, transferring
lines revealed by search patterns representing them centrally. In addition,
there are monitoring scripts and standard monitoring thus bundling the
most important, problem-related monitoring functions. Further functions
for escalation of fault messages and for sending e-mails are also integrated.

1 Introduction

Furthermore, it is considered that the number of servers has increased
sharply since the early days and that there are network restrictions such as
firewalls, (double) address translation, ipv6 and new modes (cloud comput-
ing, grid computing). Slow network connections provide no obstacle. For
data transfer only one port tcp/udp is required. Through a dynamic encryp-
tion (AES/CBC, MRC4), the Internet may be used as a transmission medium.
As a central output, there is a process display for error messages and a sta-
tus display for all servers contained in the monitoring, each as a graphical
user interface and a web interface. The process display is able to represent
and to document a failure as a dynamic process with a beginning, end and
duration.

The system has defined functions, so that it is not necessary to use any kind
of "plugins" or "smart plugins".

2 Introduction

2. Agents and result display

The focus of monitoring is on the agents, which belong to the system.

Agents are programs that run on the servers to be monitored (= nodes) and
periodically perform queries. The result is sent in form of an event (= mes-
sage) via the network to a central Management Station where it is visibly
displayed. The events will be encrypted with a secret key and a session key
(session keys mean that every message is encrypted differently). In addition
an integrity check by checksums takes place.

The transfer to the Management Station is performed in one direction via an
arbitrary tcp port. Each agent is parameterized using a configuration file, in-
tegrating the parameters to be monitored and the port and address of the
Management Station. This can also be a numeric IP address, because the
communication takes place independently of DNS (domain name service). A
name resolution on the Management Station is not necessary.

Optionally, the address of an alternate Management Station can also be
specified in case the first one fails.

The use of autonomous agents has the following advantages:

 Low network load: It is reported only in case of failure. You have to re-
alize that well over 90% of the local queries run on the node are nega-
tive (which is desirable) and the network is not used.

 Relief Management Station queries. As the number of servers to be
monitored increases the load increases linearly rather than progres-
sively.

 Security: Messages are sent; they cannot be queried from the outside.
Due to the agents, the nodes are not even potentially vulnerable.

 No loss of information at (short-term) network faults. The agents save
the messages locally subsequently delivering them when the fault
ends.

The use of agents is - with regard to the resource load - much cheaper than
the continuous queries over the network from a Management Station. The
network connection to the Management Station is opened and closed as
needed. There is no permanent tcp connection.

The agents can be used either as a background process or as a batch pro-
gram (exception: “asyncmonagent”, see below). For background processes

3 Agents and result display

the polling interval is fixed in the configuration file by the time unit seconds
(e.g. 300 for five minutes). In case of a subsequent modification the configu-
ration file will be automatically read and the event is signaled to the Man-
agement Station.

Without the entry for the polling interval, the agent terminates after each
call. Afterwards, it is periodically called by a local scheduler (for example
crontab for Unix, Task Scheduler for Windows). The agents do not need root
or administrator privileges.

On the Management Station, the events will appear in chronological order
as a process display in the "Event Browser", which is available either as a
X11 program or as a web application. In contrast to a pure status display the
messages are preserved, not getting lost by overwriting them with a new
status. This means that faults can be identified as a dynamic process making
it possible to trace them back subsequently. Furthermore, multiple faults
can also be represented. For example, more than just one file system can fill
up, which is indicated by individual messages (for large Unix servers dozens
of file systems are possible). The same is true for the ample field of log file
analysis, where the encountered lines of the log file are represented as an
event text.

The system uses the character sets UTF-8 (Unicode), ISO-8859-1 to ISO-
8859-10, ISO-8859-13 to ISO-8859-16 and CP1250 to CP1258 (Windows).

4 Agents and result display

Data Flows

The diagram shows the communication of agents with the Management Sta-
tion. The configuration files for the agents are text files that can be edited by
a local editor.

There are five different severities for the system:

1. inform
2. minor
3. warning
4. major
5. critical

5 Agents and result display

A message consists of the following attributes: severity (color-coded), re-
ceiving time (ISO date format), node name as the network name of the mes-
sage source (string constant), IP address (ipv4 or ipv6), group (string con-
stant), object (string constant), Event Type (string constant), RepCnt (num-
ber) as a repeat count, a counter for oppressed messages of the same type
and finally the event text that may have a length with up to 1024 bytes. Fur-
thermore, there are several hidden attributes, such as the creation time on
the node (UTC time stamp), the name of the operator who accepted the
event and the time of the acknowledgement. The attribute "Group" (mes-
sage group) determines the assignment to the operators.

X11-User Surface (process display)

The figure shows the Event Browser of the central Management Station
with a sequence of current messages. Each row represents an event or mes-
sage. The most recent message appears at the top, the oldest one at the bot-
tom. The second column on the left is the message severity (severity), fol-
lowed by date and time, the last one on the far right side shows the event
text, providing a unique description of the event. The message text is of out-
standing importance, because in combination with the severity, it deter-
mines the basis for the respective error handling.

With the push button "Accept" (bottom left), a message is removed after
processing, brought from the state "current" to the state "archived". It will
no longer be visible to other users, but it is possible to bring it back in a dif-
ferent part of the user interface, the "History Event Browser".

6 Agents and result display

At the top of the image there is a pull down menu which lead to the data en-
try screens for the various settings of the system. It differs depending on
whether you log on as an administrator or operator. An administrator, of
which there may be several, has the authority to make any settings and basi-
cally looks at all messages. By contrast, an operator sees only those mes-
sages whose groups he is assigned to. He is allowed to configure the corre-
sponding nodes with the menu item "NodesConfig".

All system users must log on with user ID and password. A user is allowed
to log in several times.

The optical appearance of the X11 interface (colors, font sizes, frames, etc)
can be customized using style sheets.

Web Surface (process display)

The figure shows the same view as a web interface for active (non-working)
messages. A message is acknowledged after processing by a push button on
the left side. Afterwards, the message disappears. The number in square
brackets in the column "RepCnt" indicates the number of suppressed mes-
sages according to the set filter in a certain period, so that it is possible to
control the frequency.

The form of representation as a temporal sequence of events is a fundamen-
tal requirement for an operational monitoring tool.

7 Agents and result display

3. Replacement Mechanism (Format Statement)

The replacement mechanism is intended for the user-friendly design of an
event message text. It is used on the Management Station for configuring
SNMP Traps and for the filters and with regard to agents for log file analysis
and for the evaluation of monitoring scripts.

The use of the replacement mechanism allows for an incoming text, which
consists of a series of words or columns, to be rearranged, shortened (i.e.
unwanted parts of the text can be removed), and complemented by new in-
formation. The added information may also be troubleshooting instructions.

The mechanism is implemented by a format string containing the operators
'$', '%', '&', @,? and '-', followed by a number or a substring.

This way, using the format string you can convert an incoming line into an
outgoing text (= transformation instructions).

● $n or ${n}: n is a number [1..99]. Outputs the <n>th word of the input
text

● %n oder %{n}: shift to the left, outputs the <n> columns to the left
shifted input text, the input line remains unchanged

● &n or &{n}:Shift of <n> characters to the left of the input text, there is
no immediate output, the new beginning of the text input field is auto-
matically set to the beginning of a word or column

● &{n,m}: Outputs <m> characters from the <n>th character of the
input line

● &{n[|#]substring}: Search for a sub-string in a word. Outputs from the
<n>th character to the sub-string substring in the same word. If sub-
string is not found, the output is to the end of the word

● @n or @{n}: Shift to the left by <n> columns in the input line, the
original column <n+1> is then the beginning of the input line, there is
no direct output

● %<[n|]substring>: Search for a sub-string in the whole line or option-
ally after the <n>th occurrence of a sub-string in the line (n > 0). Then
shift left until substring in the input line. The sub-string found is the
new beginning of the input line, there is no direct output

● ?<[n|]substring>: Outputs the sub-string shifted to the left of the text
input line. If sub-string is found, the formatting terminates, otherwise
it is continued with the following special characters

8 Replacement Mechanism (Format Statement)

● -<[n|]substring>: Outputs the input text truncated at the point of
occurrence of sub-string substring, the found substring is cut off, the
input line remains unchanged

● $*: Outputs the whole line
● $$: Outputs the last column of the input text

The search for substrings takes place from left to right; this also applies to
the format statement which is processed from left to right. The operators
can be combined. For example, you can switch the first word with the sec-
ond in the message text putting in between an arbitrary string. In case the
operators are not given in the required formatted text, the incoming text is
completely replaced by the string constant.

Example :

When evaluating the syslog file on a Linux server, the following line has
been determined, which is the input text for formatting:

Oct 20 16:06:45 v100500 sshd[3992]: Address 69.65.49.82 maps to guryat.com, but this does not map back to
the address - POSSIBLE BREAK-IN ATTEMPT!

Formatstring: “Break-in attempt per ssh (affected server: $4): %5“

Output for the event text:

Break-in attempt per ssh (affected server: v10050): Address 69.65.49.82 maps to guryat.com, but this does not
map back to the address - POSSIBLE BREAK-IN ATTEMPT!

The operator "%5" causes the output of the five columns/words shifted to
the left input line. "$4" is the fourth word in the input text to the desired lo-
cation of the source text. The formatted, actual text information can now be
tested for equality, so that it would appears only once within a selectable
period of time (e.g. 10 minutes) (in case of an intrusion, there may be hun-
dreds of entries of this type within a few minutes).

If the format statement is missing, the text is in full output.

9 Replacement Mechanism (Format Statement)

4. Regular Expressions (Search Patterns)

The system uses extended regular expressions according to the POSIX stan-
dard as search pattern. The properties can be found in the manual pages of
Unix. For the special requirements of this system, there are optional addi-
tions that are appended to the end of the search pattern after a slash ‘/’.

The syntax is: <RegExp>[/i|v|!]

The real search pattern followed by '/' and 'i' or 'v' or '!'.

The meaning of the symbols:

● ‘i’: Perform case insensitive matching
● ‘v’: The search result is reversed, case sensitive matching is per-

formed
● ‘!’: The search result is reversed, case insensitive matching is per-

formed

The special importance of the option can be switched off with a preceding
backslash ‘\’.

Examples:

“^os$/i” will match the string “OS”, “Os”, “oS”, “os”
“fatal/i” will match lines containing “Fatal”, “FATAL”, “fatal”, ...
“[0-9]/v” will match lines not containing any digits
“ABC/v” will match lines not containing “ABC”
“ABC/!” will match lines not containing “Abc”, ABC”, “abc”, ...
“[][1-9][0-9]{1,2}[]/v” will match a number that has more than three
places
“[]3\.14[0-9]*[]” will match the number 3.14...
“[]([3-9][0-9]{5})|([1-9][0-9]{6,})[]” will match a number that is greater or
equal 300000

10 Regular Expressions (Search Patterns)

5. SNMP-Traps (Trap Receiver)

SNMP (simple network management protocol) is a standard means for the
system management, which is platform independent. Traps and Notifica-
tions will be autonomously sent by the servers on port 162/udp (not to be
confused with port 161/udp, via which queries from the outside to a server
are possible). On the servers the background process "snmpd" must be ac-
tive and in the configuration file the Management Station must be deter-
mined as trap destination. For Windows there is the SNMP service.

The system is capable of receiving, filtering and displaying SNMP Traps ver-
sion 1, 2c and 3 (traps of version 3 only if they are not encrypted, more see
below). The filtering is done with an ordered list of specifications, which de-
cides by comparing the conjunctive components on whether and how an in-
coming trap is shown. The received messages can also be traps of other
SNMP-enabled devices such as routers or network printers.

The setting for SNMP Traps takes an administrator using the graphical user
interface:

The figure shows the input mask specifications of trap messages. The upper
part is the table of already existing descriptions. You can add, modify, delete
and search. The length of the table is not limited.

A trap is specified by the fields "community string", "Generic Trap" (v1),
"Enterprise Specific Trap" (v1), "Object Identifier (OID)" and "Matching for
Trap Text". You can appeal selectively to single OID's within a trap and com-
pare its associated numerical value with a threshold. Similarly, it is possible

11 SNMP-Traps (Trap Receiver)

to provide the same numerical value with different thresholds and severi-
ties. The fields "Node Name" and "IP Address" are provided in case there is
no name resolution for an incoming IP address, or you want to give an alias
name of your choice (for example routers). If a field is empty, the compari-
son is positive. If all fields are empty or inactive, it means: Each trap.

In the lower area you have to enter the attributes of "Severity", "Group" and
"Object" for a message. The input field "Format Trap" optionally defines a
format string, which converts the incoming message text into the output
text.

When a trap message arrives, the table is processed line by line from top to
bottom. When the specification of a line is identical with the trap message,
the result is output in accordance with the agreements made. Then the
process terminates. Traps can be suppressed with the checkbox "Suppress".
The processing sequence can also be used to process trap types so far un-
known.

The figure shows a selection of trap messages. A trap is defined as a se-
quence of numerical OID's and corresponding value shown (the numeric
OID comes over the net and is authentic). SNMP strings ("octet strings")
play a special role, serving either as a label for numeric values (for example,
process name) or containing independent information. Thus, an application
or a subsystem sends an entire text line as log information, which is then
represented as an event text.

This system is prepared to listen to port 162/tcp (or any other port num-
ber). However, the use of tcp with SNMP is rather the exception.

12 SNMP-Traps (Trap Receiver)

SNMP-v3:

To receive encrypted traps (secLevel: authPriv), you can use the Trap Re-
ceiver snmptrapd, which is for Linux available by default. By calling “sn-
mptrapd -Lsd -Oq” the program writes received notifications with symbolic
OID's in the system log file "/var/log/daemon.log", which is then used for
log file analysis; or take the command “journalctl -f -u snmptrapd” or “jour-
nalctl -u snmptrapd”.

Note: For Windows, there is the setting up of "Event to Trap Translator"
(evntwin.exe). It sends entries in the various Windows event logs as an
SNMP trap version 1. The event id of Windows is represented as a Specific
Enterprise Trap ID.

For SNMP requests (port 161), see chapter "Monitoring Scripts".

13 SNMP-Traps (Trap Receiver)

6. Active Monitoring

Active monitoring means the checking of ports (tcp) of remote servers. The
test is carried out by the Management Station. There are two different op-
tions:

1. Check accessibility of the port by opening the network connection
2. As in item 1, in addition send a request and evaluate the return

In both cases, the response time is determined and compared with a thresh-
old value. Moreover, it can be determined whether and how often the test
should be repeated. It can also appeal to ports or services that use SSL en-
cryption (for example, port 443 for https).

The figure shows the settings, an administrator can make to the Manage-
ment Station. The checkbox "CheckDNS" causes the node name entered to
be used as a function argument. Thus, the DNS name resolution is also ex-
amined. Apart from that, the IP address is taken as a function argument.

14 Active Monitoring

The output and the format of the output are set by the system and can be
adjust by the filtering mechanism.

The figure shows messages from the monitoring port in the web display. Af-
ter a disturbance, the duration of the outage (down time) is displayed with a
green message.

15 Active Monitoring

7. Mass problem and data management

One of the most important requirements is the central display and manage-
ment. This means that there is just one (possible) Management Station and
not multiple, even if the number of servers to be monitored is significant,
regardless of the number of monitors per server. This must also apply when
the network environment is difficult due to firewalls, (double) address
translation and other features.

For the present system, the maximum number of nodes per Management
Station is 8192. If several stations are in use, they can exchange messages
with each other.

On account of the resulting strict requirements for the run-time efficiency a
specially developed solution to this problem consisting of a combination of
shared memory and indexed sequential binaries is used rather than a (rela-
tional) database management system.

When dealing with the management of messages and events a distinction
has to be drawn between the current events, not yet processed, and the old
messages, the history data. The current messages are held in a shared mem-
ory area, which is organized as a ring memory and has a capacity of
100,000 events. Here, all comparison and substitution operations are per-
formed when new messages have arrived. In parallel, there is the archive
file for the long-term storage of old messages. It is a binary file, whose ca-
pacity is – in case of a 64-bit system - practically only limited by the size of
the file system. Thus, it is possible to trace back old messages for years, even
in larger environments.

It is important that both the part of the shared memory and the binary are
directly available for access to the X11 interface and to the Web interface
without any transformation. The access times are accelerated by binary
search, so that a large number (several million) of archived messages can be
handled efficiently.

Data reception from the nodes is organized so that the acceptance and then
the following processing are decoupled, with an internal buffer as interface.
Both processes are carried out concurrently in the form of threads. Due to
the asynchronous processing and storage load peaks, as they may occur
during operation of several thousand clients, are offset.

Data management is fully integrated into the system, there are no adminis-

16 Mass problem and data management

trative expenses as would be required in a regular database management
system. The data areas are expanded dynamically during operation. Old
messages can be retrieved and downloaded from the X11 and the web inter-
face.

17 Mass problem and data management

8. Agents for monitoring log files

Log files ("Logs") are text files that are continuously described by system
and application programs with information about their condition. Logs are
ubiquitous, at least on Unix systems. There is not only the system log file(s)
(syslog) but also log files for database management systems, Web servers,
firewalls, backup servers, etc. Each application, for which a server is oper-
ated ultimately, usually has one (or multiple) log files.

This system offers the possibility to evaluate a variety of log files on a server
by filtering out such entries that suggest an acute or impending failure using
appropriate search patterns. The search patterns use extended regular ex-
pressions (POSIX standard). Found records or rows are sent along with the
file name to the Management Station, where they are displayed as a mes-
sage text. If necessary, the message text on the agent and/or the Manage-
ment Station can be changed by a format string.

Large files: Optionally, the size of a log file can be monitored. The maximum
size in megabytes (MB) and a severity are given as a threshold. If the values
are exceeded, a message with a boilerplate message text appears.

Exception handling: If the target file does not exist or cannot be opened
read, a message with a boilerplate message text is displayed. This behavior
can be turned off by using a special character in front of the declared file
name.

The agents of this system use a list of filters that are set in the associated
configuration files along with the file name. A filter consists of pattern, op-
tional format string, severity, and optional counters for the frequency of en-
tries found.

 There are three different filters:

1. Positive filter: line corresponding to the pattern is displayed
2. Suppression filter: line corresponding to the search pattern, is sup-

pressed
3. Negative filter: It appears when the entire search process encounters

no line (search for absence)

Using the list of filters on agents, which may be arbitrarily long, a selection
(pattern) and an assessment (severity) is performed. The process takes
place at the point where the data arise. Data that are not selected make no

18 Agents for monitoring log files

appearance, meaning no burden for either the network or the Management
Station.

The list of filters is performed at each line or newly added row of the target
file from the first to the last element. If a search pattern matches, the run
ends. This form of processing ensures uniqueness, that is, it does not matter
(it may even be intended) whether a search pattern from the list is con-
tained in another. So for example the pattern "error" is included in the
search pattern "noerror".

By placing "noerror" before "error" a suppression filter is provided, which
prevents the appearance of unwanted messages. The combination of posi-
tive filters and suppression filters in an ordered list allows the use of gen-
eral search patterns such as "fatal", "emergency", "panic", "sql-error", "seg-
fault", "inconsistencies", "deadlock", etc.

When specifying the file names Meta characters such as '*' and '?' ("Wild-
cards") are allowed in their base name (Example: /var/log/*.log). These log
files can be bundled in a common directory. In addition, newly added files,
that match the pattern, are dynamically detected.

In the following diagram, the evaluation principle is shown again with a list
of length N. It should be noted that the order of positive filtration and sup-
pression filters is significant. For negative filters, the order does not matter,
because the absence of the entire process is crucial.

The same mechanism is also used in the analysis of monitoring scripts.

19 Agents for monitoring log files

Evaluation cascade for log files

The other attributes of a filter in addition to the severity are optional infor-
mation about maximum and minimum occurrences. Thus, "message flood-
ing" is prevented. In addition, it is possible to make a transformation of the
search result in both the agent and the Management Station by using the
format string.

20 Agents for monitoring log files

The polling interval for the agent usually ranges from 1 to 5 minutes. In spe-
cial cases, it is possible to reduce it to two seconds (program “asyncmona-
gent”, see below). Analysis of more than one line is possible. To this effect,
the special character ‘\n' has to be used in the search pattern.

Examples of log files are the Unix system logs:
(“/var/log/messages“, “/var/log/system.log“, “/var/log/firewall.log“, usw).
The Apache Web server has the log files "error_log" and "access_log".

8.1 General log file analysis

For the various Unix derivatives there is the program logmonagent. For
Windows there is the agent program logmonagent.exe.

The agents are parameterized by different configuration files. In a configu-
ration file multiple log files can be set along with the list of filters.

Incremental analysis :

During the polling interval the growth of the target file is successively evalu-
ated. This is the standard in log analysis.

Total analysis :

The log file is always viewed from beginning to end. The analysis is per-
formed, if the modification time of the file has changed.

Analysis of this type makes it possible to check e.g. system files or configu-
ration files such as "/etc /hosts", "/etc/exports", "/etc/sshd_config", etc. for
suspicious or unwanted entries. At the same time you would know, if the
files had been changed. Moreover, the deliberate absence of certain system
files can be (for example, "/etc/hosts.equiv") monitored, i.e. a signal would
indicate that someone is creating the file.

The same applies to Windows.

21 Agents for monitoring log files

The image shows a message from the monitoring of the system log file
"/var/log/system.log" of Mac OS X. The search pattern (search argument),
which caused the message, is "[Ss]aved crash report". The line found, the
search result, has been converted into a short, readable form by putting it
through a filter with a format string at the Management Station. If you dou-
ble-click on the message you will get the widget "Event Information" with
the original message text.

This is the incremental log file analysis. See also the example in the Appen-
dix.

8.2 Multiple log file analysis (Unix)

Another agent makes it possible to monitor not only one but several log files
that are located in a directory. The list of filters applies to all files found. In
contrast to the previous agent we define here the files that are to be evalu-
ated, using a list of search patterns ("wildcards") for file names.

The name of the agent is: logdiragent and is parameterized by different con-
figuration files.

22 Agents for monitoring log files

Sample configuration file for multiple log file analysis: SAP/R3-Tracefiles:

destination::192.168.178.21 # Address of management station
portno::55555 # Port tcp for transmission
attribute::SAPGROUP SAP/R3 # Attribute Group, Object
pollingsecs::30 # run as daemon
logfiledir::/usr/sap/PD3/PWEBMGS11/work # directory for log files
files::4[maj]::dev_w? dev_w?? dev_rfc? dev_rfc?? dev_disp dev_?? stderr*
Specification of file names in directory, „4[maj]“: large files for files > 4 MB
below the list of filters for the analysis
 filter::"update deactivated;;vb error: $*"-crit # after “;;” format string
"vb error;;vb abort: $*"-crit # vb error
"^Disconnecterror:"-crit "^Sqlerror:"-warn
"^Sevdberror:;;Error data base: $*"-maj
"^Profileerror:"-warn "Sharedmemoryerror"-maj "^Stackerror:"-warn
"^Mallocerror:"-maj "^Applicationerror:"-maj "^Inputbuffererror"-maj
"^Speichermangel:"-warn "^Shared Memory"-warn
"update activated"-null # Suppression filter
"Error Code"-min # Job aborts
"Error in ABAP statement"-maj
"[Mm]emory exhausted:"-maj
"Error.*in.*application.*program"-min
"CPIC-Error"-null # Suppression filter
“ERROR.*shmctl“-maj “ERROR.*shmget”-maj
“ERROR|Error|error”-warn[-1] “WARNING|Warning|warning”-min[-1]
“FATAL|Fatal|fatal”-maj[3] # drift net with unknown lines “FATAL…”
end of configuration file

The search pattern (regular expression) begins with a quotation mark '"'
and ends either with ";;"or, again, with a quotation mark.

8.3 Multiple recursive log file analysis (Unix)

Log files are not only monitored in (just) one directory but also in the un-
derlying directories.

The name of the agent is: logrecagent and is parameterized with different
configuration files.

23 Agents for monitoring log files

9. Agents for Standard Monitoring

The standard monitoring offers a number of ready, problem-oriented fea-
tures that have been selected so that they would be relevant and sufficient
for the vast majority of nodes. At this point, neither a programming nor an
exaggerated configuration effort is necessary. The agent creates the design
of the message texts, which can be adjusted using the filter on the Manage-
ment Station, if required. The boilerplate message text contains not only the
set threshold, but also the determined current values so that trends can eas-
ily be identified. The thresholds themselves are, as far as possible, related
(percentage) values in order to achieve comparability and generality. See
examples in the appendix.

9.1 Unix

The following functions are enclosed in the agent for standard monitoring:

● Threshold file systems: a general threshold for the utilization rate
(ratio of occupied to available memory) is set that applies to all cur-
rent and newly added file systems. In addition, it is possible to deter-
mine individual thresholds for each file system or else to remove it
completely from the monitoring. In case an individual threshold has
been defined, the existence of the mount points will be checked simul-
taneously. If a threshold is exceeded, each file system has a separate
message containing the following information in the message text:
mount point, threshold, total memory, free memory yet, file system
type, and rate of change of consumption in MB/h. Thus, it is possible
to estimate the time remaining until full occupancy of the disk.

● Threshold inodes of file systems: The percentage utilization as the ra-
tio of the number of used inodes and total number of inodes is moni-
tored for each file system. The threshold value is a constant 95%.

● Process Monitoring: Check if background processes are active. The
test relates to the existence of a Boolean value or the number of in-
stances. A list of process names is to be entered; search patterns (reg-
ular expression) are allowed. The search also refers to the process pa-
rameters. After failure and subsequent restart of a background
process, a message appears automatically that explicitly indicating the
failure time (down time).

● Restart function: extension of the process monitoring; in case one
(or more) background process(es) fail(s) the process automatically
restarted by a restart procedure which is indicated at the Manage-
ment Station.

24 Agents for Standard Monitoring

● Threshold number of zombie processes: Two thresholds + Severity
can be set (e.g. > = "warning" 100 and> = 200 "crit").

● Monitoring of syslog files: Incremental analysis of one or more log
files. Besides the official syslog file there may be others such as
"secure.log", "daemon.log", "kernel.log". Furthermore, other log files,
such as web servers, database management systems or applications
are permitted.

● Threshold syslog file size: If the size of the syslog file exceeds a certain
value in MB, a message appears. Value + Severity can be set. General
monitoring of file sizes ("large files") is done in the log file analysis.

● Monitoring programs: call and evaluation of one or more monitoring
scripts or executable programs. The analysis refers to the text output
of the program, which is filtered exactly in the same way as the
contents of a log file (see also monitoring scripts).

● Listenports: check local tcp ports to the loopback interface. Input a
list of port numbers (e.g. 22, 80, 443). In this test, the ambiguity is
avoided (network or server) that inevitably occurs during a test over
the net. After loss and re accessibility, there is an informational
message indicating the failure time.

● CPU Utilization Threshold: Adjustable two percentage thresholds +
Severity for short-term load and average load over a configurable
period also, e.g. 120 minutes.

● Threshold Swap: ratio of occupied to a maximum of disposable swap
space in percent. Set two percentage threshold + severity.

● Threshold load average 15 min: Two thresholds + Severity (e.g. >
10 "warn", > 50 "crit") can be set.

● Reboot and Startup: message to the Management Station at this event.
● Lifecheck (heartbeat): Dynamic registration of the nodes on the

Management Station. After failure of the server, such as maintenance
work or a major disruption, downtime is explicitly specified on the
Management Station.

It is also worth mentioning that - with regard to the important file system
monitoring - it is not necessary to enter each file system name individually,
which would be a significant problem if a few dozen (or more) names were
to be entered.

The name of the agent program is for all Unix derivatives: basemonagent. It
is parameterized with different configuration files.

25 Agents for Standard Monitoring

9.2 Windows

The following functions are included in the standard agent for monitoring:

● Threshold File Systems (Drives): As with the Unix file systems. En-
ter a general threshold from which reports are produced. The local
drives are viewed. In addition, each drive will be provided with an in-
dividual threshold + Severity. In this case, there is a critical signal for
the non-existence of the drives. The second threshold of 98% causes a
critical message. Output is similar to that of the Unix file systems.

● Monitoring tasks: checking the existence of tasks. Input a list of task
names. The number of instances of a task can also be checked.

● Service monitoring: detecting the existence of active and registered
services. Input a list of service names.

● System Event Log: Log file analysis for disorders of the operating sys-
tem. Search argument is the event ID and/or the Microsoft event type
"error" and/or "warning". Each event ID can be provided with an indi-
vidual severity. One or more Event IDs may be suppressed. The mes-
sage strings are also included in the message text.

● Application Event Log: Log file analysis for events in applications.
● Security Event Log: Log file analysis for events in system security.
● Monitoring programs: call and evaluation of one ore more monitor-

ing scripts or executable programs. The analysis refers to the text out-
put of the program, which is filtered exactly in the same way as the
contents of a log file (see also monitoring scripts).

● Listenports: check local tcp ports to the loopback interface. Input a
list of port numbers (e.g. 22, 80, 135, 443). After loss and re accessi-
bility, there is an informational message indicating the failure time.

● CPU Utilization Threshold: Two thresholds for a short-term loading
and for an average load can be set and are adjustable over a period of
time (e.g. 60 minutes). It monitors all CPUs individually.

● Memory Threshold: Is defined as the ratio of occupied to total space.
There are two adjustable thresholds + Severity (e.g. 90% + "warning"
99% + "crit"). When the threshold is exceeded, the total space in MB
is also displayed.

● Threshold Swap (Page): Is defined as the ratio of occupied to the max-
imum size of the page file. There are two adjustable thresholds +
Severity (e.g. 95% + "maj" 99% + "crit"). When the threshold is ex-
ceeded, the maximum size of the page file is also output to the Man-
agement Station.

● Reboot and startup of the operating system are signaled on the Man-
agement Station.

26 Agents for Standard Monitoring

● Lifecheck: as Unix

The name of the agent program is: winmonagent.exe. See also the example
in the Appendix.

10. Agents for Monitoring Scripts

Special agents for the implementation and subsequent evaluation of moni-
toring scripts to realize special requirements. The programs may contain in-
structions for error handling.

10.1 Unix

The programs scriptmonagent and asyncmonagent may be used to execute
any type of monitoring scripts which can be parameterized with different
configuration files.

Any executable programs or scripts that have a text output to stdout and/or
stderr can be used. The output is filtered according to the same pattern as in
the log file analysis. For every filtered line of text, an event is generated and
sent to the Management Station.

In a configuration file, several programs plus filter can be arranged. The
scripts can be provided with input parameters. If the exit code of a script is
nonzero, the agent interprets this as incorrect behavior and will send a sep-
arate, critical message to the Management Station. In the event of a blockage
there is a timeout (default: 30 seconds) and also an exception message. Sim-
ilarly, there is an error message if the specified script is not executable.

The following serves as an example for a configuration file showing how the
memory consumption of processes with two thresholds is monitored.

destination::192.168.178.21 # Address of Management Station
portno::55555 # transmission port
attribute::Linux Scripts # Group Object of the events
pollingsecs::600 # run as daemon
cmd::ps -efly | awk 'BEGIN {lim1=100000;lim2=500000} {if((NR > 1) && (NF >= 14)){
if($8 >= lim2){print "Lim2:",lim2,$0
} else if($8 >= lim1){
print "Lim1:",lim1,$0
}}}'::"^Lim1:;;Process-Memory (Threshold: $2 KB) Usage: $10 KB, Processname: %15"-min[10]
"^Lim2:;;Process-Memory (Threshold: $2 KB) Usage: $10 KB, Processname: %15"-maj[10]
"*;;System error: $*"-crit[1]
#cmd:: ... more commands to evaluate
#end of configuration file

27 Agents for Monitoring Scripts

After the keyword cmd:: the command to run is entered ("ps -efly", Linux)
edited via a pipe ’|’ using the Report Generator "awk", followed by the list of
filters according to which the output per line is formatted and according to
which two different severities are assigned depending on the exceeded
threshold. For each process, which has exceeded the first or second thresh-
old value, there is a special message specifying in its event text threshold,
current value and process name. Of course, it is also possible to implement
the command and (numerical) evaluation of a program, which is then de-
clared in the configuration file. (The same function can also be implemented
using the agent for standard monitoring).

Other examples for the use of monitoring scripts are the determination of
the utilization rate of extents and tablespaces in the Oracle database man-
agement system. For Informix, it is the DB-spaces and logical logs.

The agent program asyncmonagent is an extension of the programs script-
monagent and logmonagent. Each script or each log file that is declared in
the configuration file can be provided with its own polling interval. The exe-
cution of the individual monitoring functions takes place concurrently in the
form of threads. The agent is operated exclusively as a background process.

CRONJOBS (SCHEDULER) AND DAEMONS:

Using the agent program asyncmonagent also cronjobs can be realized. The
handling of the times happens as when configuring crontab() on Unix.

Example:

destination::168.178.20.21
portno::55555
attribute::Linux AsyncMonitorCollection

#logfile::[name::]<crontabspec::<fileenam>::filterlist
#total::[name::]<crontabspec>::<filename>::filterlist
#cmd::[name::]<crontabspec>::<command>::filterlist
cmd::0 10 * * 1-5::echo “It is ten o’clock in the morning (mo-fr) `date`“::“*“-info
check disk space
cmd::15,45 6-20 * * *::df -k::“[]100%[];;FS full: $*“-crit “[]9[5-9]%[]“-maj
“[]9[0-4]%[]“-warn “[]8[7-9]%[]“-min “[]8[2-6]%[]“-info
cmd::5::journalctl -f -q --since=-2m -p crit::“*“-crit # fastest way of signaling
“journalctl -f“ will start after 5 seconds and does not terminate
... more functions and instances

28 Agents for Monitoring Scripts

SNMP:

The script agents can perform SNMP queries on the local server (domain
name: localhost). This one takes the Unix commands snmpget, snmpwalk,
snmpdelta, snmpbulk, and filters the output. The results reach the Event
Browser passing the normal tcp port. This spares you continuous queries
over the network.

Direct messages:

In addition, there is the command rsendmsg that can be used to directly
send messages to the Management Station in scripts of any kind (Shell, Perl,
etc).

10.2 Windows

There are the programs scriptmonagent.exe and asyncmonagent.exe, which
have the same functions as for Unix.

Example: Evaluation of the command "netstat -an"

destination::192.168.178.21
portno::55555
attribute::Windows
pollingsecs::120
cmd::netstat -an::“^[]*UDP/v“-null “127\.0\.0\.1|\[\::1\]“-null
“:(68|13[78]|500|1900|3702|4500|4919[23]|515[45][1-9]|5855[01])[]/v;;Udp-Port: %1“-warn[3]
#cmd::... more commands

The analysis is done with a positive list of allowed ports, which is part of the
third filter. The first filter suppresses all lines that do not begin with "UDP".

Direct messages:

As for Unix the command rsendmsg.exe is available for Windows. It is pa-
rameterized with the port number, the address of the Management Station
and the components of the message.

29 Agents for Monitoring Scripts

11. Agent for Security (Unix)

Agent for the purpose of security that reports changes to the file system in
short polling intervals.

The agent reports after the initialization change of the attributes of system
directories and system files. These are preferably those files and directories
that determine the behavior of the operating system and the change in op-
eration only takes place under special circumstances. These include regular
installations or updates, but also covert installations by rootkits and other
attempts to tamper with. If desired installations take place, one can make
comparisons between announced and real changes. When added new files
of any kind in a directory, it is also reported!

The investigated distinguishable attributes are: inode number, size, modifi-
cation time, mode/permission, status time, user id of owner, group id of
owner.

The name of the agent program is secmonagent and is parameterized with
different configuration files.

Example :

destination::192.168.178.20
portno::55555
attribute::Debian Security
pollingsecs::30 # run as daemon, evaluation every 30 seconds

files::/bin[crit] /sbin[crit] /usr/bin[maj] /usr/sbin[maj] /etc/init.d[crit] /etc/[maj]
/usr/lib /boot[crit] /boot/grub[crit] /lib[maj] /lib/modules[maj] # ...
exclude::/etc/mtab /etc/resolv /etc/adjtime # ...

It is declared a list of directories and/or files that are optionally supplied
with a severity. Optionally you can with the keyword exclude:: declare a list
of file names and/or subdirectories with full path name to be excluded from
monitoring.

The agent messages include in the Event Text the names of the directories
and files located in them as well as the kind of change.

30 Agent for Security (Unix)

12. Lifecheck (Heartbeat), Dynamic Registration

The operation of the monitoring agents does not require the input of any
data such as computer name and IP address. These are automatically
recorded and managed on the Management Station. Information comes
from the servers to be monitored and is constantly updated.

A node is detected by the system after the standard monitoring for the
server has been set. With each call a special invisible control message -
which also serves as an authentication - is sent to the Management Station
renewing a timestamp. The age of the timestamp is monitored continuously
in the background. Both the (first) application as well as the lack of control
message is signaled after a certain configurable number of seconds in the
Event Browser.

In addition, the Management Station automatically performs a test with
Icmp-Ping, if a server has not reported after a certain time, which is also ad-
justable. After a total of three test with a negative result and the appropriate
signaling output the server automatically goes to the state of "disabled". Af-
ter that, there are no more messages. The server remains in this state until
it logs on again. When a new registration has happened, an informational
message is sent indicating the failure time in the message text.

This automatic feature allows control over the network connection and the
potential failure of the entire server.

The number of servers monitored can be listed in the X11 and web inter-
face, combined with a Status Indication that shows the highest severity
message in a browser for each active node. If a node name appears with a
different IP address than previously reported, an automatic warning is gen-
erated in the Event Browser. This may well happen for servers with more
than one network card. The following screen shot shows a trouble-free run-
ning server that does not cause messages indicated by a periodically renew-
ing timestamp and a green status message (left column of the next picture).

31 Lifecheck (Heartbeat), Dynamic Registration

The picture shows the list of nodes monitored by the agents of this Manage-
ment Station. For each server it can be specified when it has answered the
last time, the interval in seconds of the current time and the polling interval.
The input fields in the lower part are search boxes, as the list can be very
long. With the checkbox "DisabledNodes" the servers in question are listed
separately.

Note: In conventional systems of this type, the administrator must manually
input host name and IP address on the Management Station. From then on,
they are virtual system constants forming the prerequisite for monitoring.
The problem is less the amount of work (plus option to the wrong input),
but rather the fact that the host name and IP address have already been de-
clared elsewhere, namely in the original. It is also not uncommon that a
server has more than one address. Another point is the dependence of DNS
records. This inflexible declaration becomes a serious problem in case of
certain server architectures (for example, high-availability systems) that
provide dynamic allocation of addresses and server names.

13. Configuring the agents, Command-Interface

The graphical user interface offers the possibility to centrally edit the con-
figuration files and to manage the nodes. For this purpose, it communicates
with a background process on the server via an udp/tcp port. The names of
configuration files are kept on the Management Station whose content is
then edited via the Web. There is no redundant data. After processing each
file is restored. There is no functional dependency on the communication of
the monitoring agents.

There is also the possibility to save configuration files locally on the Man-
agement Station and to read existing files, which can then be distributed to
any node.

32 Configuring the agents, Command-Interface

Moreover, there is the possibility to execute commands for the operators
run on a node (for example, “ps -ef”, “df -k”, “netstat”, etc.) - for administra-
tive purpose - via a command interface. The text of the command return ap-
pears in a separate widget. See also the example in the Appendix.

Authorization for the configuration lies with the administrator and with the
operators the server is assigned to.

In the picture on the right below the names of the configuration files of a se-
lected server are listed. A double-click on the upper left column of the list
takes you directly to the server’s command interface to issue commands.

The name of the background process is available for Unix: remoteconfd, and
Windows: remoteconfd.exe.

Security: The interaction is particularly protected

● Authentication by secret keys, IP address of the Management Station
and/or "authentication string"; provides protection against replay at-
tacks

● AES encryption with cipher block chaining mode (CBC) and session
key

● Checksums for data integrity

33 Configuring the agents, Command-Interface

14. User Management

You have to log on with a user ID and a password to use the system. The
user management is the task of an administrator. There are three input
screens on the graphical user interface.

1. Declaration of the user, in this case, the name and the initial password
is entered and determines whether there is an operator or adminis-
trator

2. Declaration of group names
3. Assignment of groups to an operator

Up to 255 operators or administrators can be created. The number of
groups is not limited.

An administrator sees all messages, an operator only the messages of the
groups assigned.

15. The filter mechanism (Management Station)

Integral part of this system is the filtering process of incoming messages at
the Management Station, which is aimed at keeping the system clear of not
relevant or repeating information and/or at automatically archiving mes-
sages no longer relevant by the system. The respective configuration is done
by an administrator on the graphical user interface in operation.

15.1 Pre filter mechanism

The pre filter mechanism is located between the receiving and storing a
message. Events that are suppressed do not get into the database. In his
context, it often occurs that similar messages are coming from the same
source and differ with regard to their attributes just in the message text. For
example: In case of performance data the input text varies often only in nu-
merical values. The degree of similarity can be determined through the use
of search patterns (regular expressions). In addition, the event text can be
changed by using a format statement.

34 The filter mechanism (Management Station)

The figure shows the graphical input mask for the filters. The upper part
contains the already existing filters. In the area below ("Event Specification
(in)") a message with its attributes is described. Free input fields (or "de-
fault") cause a positive comparison result for this attribute. With the check-
box "Suppress" messages can be suppressed indefinitely.

In the lower part of the mask ("Event Specification (out)"), you can option-
ally specify the outgoing message by defining or redefining "Event Text",
"Severity", "Group", "Object". With the input field "Suppression Time
(hor:min:sec)" you determine the duration of the temporal suppression of
the same messages. In case of suppressing, a counter at the respective mes-
sage is incremented by one, which is displayed in the column "RepCnt" of
the Event Browser in square brackets.

If all input fields are left blank or "default" and all severities are set, it has
the following effect: Each message that hits this filter is suppressed for the
set period, if repeated. This general description of an incoming message can
gradually refined by placing appropriate filters in front. This is a self-regula-
tory mechanism that detects even previously unknown messages.

Important: This affects only messages with the same content, occurring re-
peatedly over a certain period of time while different messages are dis-
played (Difference Display).

The checkbox "Strict" turns off the comparison of the message text. Similar
messages are also suppressed. Using the spin boxes in the fields "Counters"
the suppression of the same or similar messages in number is possible.

When a message arrives, the filter list is traversed (starting from the top). If
they coincide with the specification, there is a treatment, and the process
terminates. It should be noted that the result of filtering depends on the fil-

35 The filter mechanism (Management Station)

ter order. They are to be arranged so that the special filters precede the gen-
eral ones.

Again, the graph shows the principle of the processing in a number of N fil-
ters. It takes place in two steps: firstly to determine the filter by comparison
and secondly to decide whether to display or not on the basis of already ex-
isting messages. In this way, the system is able to dynamically adapt the
message volume, without causing a loss of information.

During all transformations the original message text is preserved and can
be viewed by double-clicking on a message.

36 The filter mechanism (Management Station)

The number of filters is not limited. If the list of filters is empty, each mes-
sage is displayed.

15.2 Filters Downstream (EcFilter)

Here, it is possible to automatically archive similar messages that are still up
to date and replacing them with the newly incoming message by using a list
of search patterns. To make this process visible from the outside, the repeti-
tion counter ("RepCnt") of the corresponding message is incremented by
one. Identical messages are always treated like that.

The figure shows the graphical input screen. Here, input a string constant or
a search pattern (regular expression). Thus, the message text of a new mes-
sage will be compared to existing events thus determining an event correla-
tion.

15.3 Timefilter (Scheduler)

Here, messages are suppressed in a set time frame. This applies for example
to maintenance periods scheduled for a particular day of the week or month
in a given period. Another example is the operating hours on working days
only between 6 a.m. - 8 p.m. However, it is principally assumed that a server
is running 24/7.

37 The filter mechanism (Management Station)

The picture shows the input mask of the time filter. In the upper part the ex-
isting filters are listed. In the middle section, messages in their attributes
("Severity", "Group", "Object", "Nodename", "EventType", "Event Text") can
be specified. In the input area below, the period, in which one specifies a
time per week or month and the duration in minutes, can be defined.

38 The filter mechanism (Management Station)

16. Forwarding of Messages

Accrued messages can be routed by a special and a general device in real
time. It should be noted that the display and storage of messages and their
escalation are two different processes (one can not replace the other).

16.1 Forwarding by E-Mails

Mails via SMTP or SMTPS (secure SMTP) can be directly generated without
programming. Ann incoming message is specified adding mail address(s),
mail server, backup server, and optional header text. In the case of secure
SMTP user ID and password of the mailbox on the mail server have to be
added, too. With the input fields "MaxNumber" and "Time Interval" the
number of outgoing mails in a period can be limited. In the email, the mes-
sage is displayed as a text component by component.

The figure shows the specifications for sending mails. A message can be
sent to any number of addresses.

39 Forwarding of Messages

16.2 Export (Automatic Actions)

The system may export messages that are specified in the graphical user in-
terface, a program interface. The processing program is also specified in the
user interface. The message itself is passed, component-wise, as positional
parameters to the program. This functionality is often referred to as "auto-
matic action".

This mechanism can also transmit messages to another Management Sta-
tion. The transfer can be done using either tcp or udp.

The picture shows the graphical user interface for exporting messages.

If the program you are defining a return code other than zero returns, this is
regarded as an error. In the first column of the Event Browser (column
heading: "OrMaEx") is to see if the message was sent as email and/or
whether an export took place. If forwarding was successful, the letter 'X' ap-
pears, on failure comes the letter 'E' in red.

40 Forwarding of Messages

17. History Data (Reports)

After a message has appeared and been processed in the active X11
Browser or the Web Interface the operator or administrator presses the
push button "Accept". In this process, the system records the time and the
name of the operator. The message is then no longer visible in the output
medium, also not for other users.

Thus, it can be controlled who has completed at what time which type of
event (acknowledged).

Via a selection mask in which you can look for certain attributes of an event,
the old messages are made visible again.

The figure shows the selection screen, and the representation of the found
events in the History Event Browser. Additionally, you can specify the name
of a file in which the messages are stored line by line. There is also a file se-
lection box for selecting the file name.

By double-clicking a line you get a widget with the times for creation, recep-
tion and acknowledgment of the message. Using the push button "Retrieve"
a message can be placed on the active browser.

41 History Data (Reports)

Analogous to the X11 interface there is the web form for the display of the
history data. The operator can download the content directly to a file on his
PC. The file contains one event per line, in which the components of the
message are displayed as text and separated by semicolons.

On the basis of the history data it is possible to make not only statistical
evaluations but also compare new problems with old incidents to optimize
the error handling. This is especially true for large data volumes if the
events date back several years.

42 History Data (Reports)

18. Background processes on Management Station

There are the following background processes:

● monlistener: Receives the messages from the agents, one instance per
port number; also receives forwarded messages from other Manage-
ment Stations; reception takes place concurrently and asyn-
chronously

● lifechecker: Accomplishes the heartbeat and indicates if a server fails,
processing is carried out concurrently

● snmptraplistener: Receives the SNMP traps, default for 162/udp4+6;
reception takes place concurrently and asynchronously, also asyn-
chronous name resolution of IP addresses; the background process al-
lows an unlimited number of clients

● portchecker: Implements an active surveillance; processing takes
place concurrently

● browserctl: Maintains data base and accomplishes emails and exports
messages; processing takes place concurrently

● udplistener: Receives messages from other Management Stations over
udp

Concurrency is achieved by multithreading. The coordination of data access
is done with fcntl(), mutex, semaphores.

All Programs for reasons of efficiency in C++ (also applies to the agents).

43 Background processes on Management Station

19. Copyrights

The developer of this program is Wilhelm Buchholz. The source code is his
property. The author has worked twenty years in the system management,
ten years of it with different tools in this area.

There are agents for the following platforms: Linux, Windows, Mac OS X,
AIX, HP-UX, Solaris. Other platforms can be included.

In the area of real-time monitoring Hewlett-Packard (HP) is available as a
supplier, with the main product HP OpenView Operations (formerly OPC,
then ITO, VPO, OVO) and IBM with the product Tivoli Monitoring in a variety
of versions. Another supplier may be BMC with the product Patrol.

Other systems in this area, including open source, are rather uninteresting,
because adequate functions for presentation of results, data management,
multi-user capability, log file analysis, capacity problems are missing or not
clarified. The problem of capacity is serious; so what happens when there
are no longer a few hundred but several thousand servers under surveil-
lance. Only vague statements can be made as to the benefits and operating
costs.

The extremely complex systems from HP and IBM stick out of the mass of
other systems mainly because they offer a full log file monitoring.

© Dipl.-Inform. Wilhelm Buchholz, Im Bruche 6, D-31275 Lehrte

44 Copyrights

20. Figures (Examples)

20.1 Example Standard Monitoring Unix

The figure shows a configuration file for standard monitoring in the remote
editor of the Management Station. The agent is run as a background process
with a polling interval of 150 seconds.

It is monitored: All file systems, a list of four background processes,
swap/memory, load average, average CPU load for 60 minutes and all log
files with the pattern "*.log" in the directory "/var/log " and the error_log of
Apache.

Furthermore, the background process "remoteconfd" is monitored, and
restarted should it not be active. With the command "netstat" the udp ports
111, 123 and 161 are monitored. The evaluation of the command is done
with negative filters (lower picture).

The file system monitoring is one unit independent of the number of
mounted file systems. The same also applies to the process monitoring and
the port monitoring.

45 Figures (Examples)

20.2 Exaple Standard Monitoring Windows

The figure shows the processing of a configuration file using the remote edi-
tor at the Management Station. This is the configuration file for standard
monitoring for Windows.

Monitoring includes: All drives, a list of four tasks, five services, Memory,
Page File, average CPU load for 120 minutes, two listenports ipv4 and two
listenports ipv6. In addition, the System Event Log, the Security Event Log
and Application Event Log. As a search argument for the event logs there are
event IDs and/or event type. The option “-S” followed by a list of Event Ids
causes the exclusion of the corresponding Windows events. The threshold
values for the page file and memory are percentages of utilization.

It is quite clear that the configuration files are compact, easy to read and
easy to manage, as they exist at the operating system level. By the exchange
of configuration files good synergy effects can be achieved.

46 Figures (Examples)

20.3 Example Process Monitoring

The figure shows messages in the browser "Selected Event Browser", which
allows selecting specific messages in the active browser. The selected events
indicate the beginning and the end of a fault.

At the beginning of the disturbance, the critical message comes with the text
"Process Not Running: 'oracle'." The numerical value in square brackets in
the column "RepCnt" indicates the number of messages, which have been
suppressed by a filter due to substantive equality. If the background process
runs again, a green (informative) message will appear automatically (with-
out configuration) explicitly indicating the failure time in the message text.
This information is usable for service level agreements and other statistical
surveys.

The messages come from the agents and are standard monitoring (process
monitoring). The same functions are related to tasks and services in the
standard monitoring for Windows.

47 Figures (Examples)

20.4 Example File System Monitoring

The figure shows the default message given by the file system monitoring.
The message text contains the following information: Affected mount point,
percentage utilization, exceeded percentage threshold, total occupancy in
MB, available memory in MB, file system type, rate of change of consump-
tion in MB/h, average speed in MB/h. By specifying the rate of change elab-
orate trend graphics are unnecessary.

All existing file systems are recognized without any additional effort. Each
file system has its own message when exceeding a threshold value.

48 Figures (Examples)

20.5 Example Log File Analysis

The figure shows a message from the standard monitoring, namely the anal-
ysis of error_log of Apache2. The triggering pattern at the agent was "\[er-
ror\]". The found line has been changed at the Management Station using a
combination of substitution and left shift so that the dates have disap-
peared. You can see the original and converted message text in the image.

This substitution feature is of great importance, because, without having to
bother with date and time, it is possible to concentrate on content (by
value), equality and to suppress, temporarily, information. Thus, "message
flooding" is prevented, which pose a significant problem for conventional
systems.

It may occur that in certain disorders (such as disk errors) thousands of en-
tries are written to the system log file in a relatively short time. In principle,
this may also occur with other log files. Therefore, an effective filtering in
both the agents and the Management Station is necessary.

49 Figures (Examples)

20.6 Example SNMP-Traps

The figure shows a trap message caused by a crash, which has been altered
to a user-friendlier version by a format string. By double-clicking a selected
message you get the widget "Event Information" showing the altered and
the original event text.

50 Figures (Examples)

20.7 Example Command Interface

The figure shows the return of a command to a remote Windows server. You
can also restart services if the background process remoteconfd.exe has the
appropriate rights. Communication is encrypted with AES/CBC. The same
applies to Unix servers.

51 Figures (Examples)

	1. Introduction
	2. Agents and result display
	3. Replacement Mechanism (Format Statement)
	4. Regular Expressions (Search Patterns)
	5. SNMP-Traps (Trap Receiver)
	6. Active Monitoring
	7. Mass problem and data management
	8. Agents for monitoring log files
	8.1 General log file analysis
	8.2 Multiple log file analysis (Unix)
	8.3 Multiple recursive log file analysis (Unix)

	9. Agents for Standard Monitoring
	9.1 Unix
	9.2 Windows

	10. Agents for Monitoring Scripts
	10.1 Unix
	10.2 Windows

	11. Agent for Security (Unix)
	12. Lifecheck (Heartbeat), Dynamic Registration
	13. Configuring the agents, Command-Interface
	14. User Management
	15. The filter mechanism (Management Station)
	15.1 Pre filter mechanism
	15.2 Filters Downstream (EcFilter)
	15.3 Timefilter (Scheduler)

	16. Forwarding of Messages
	16.1 Forwarding by E-Mails
	16.2 Export (Automatic Actions)

	17. History Data (Reports)
	18. Background processes on Management Station
	19. Copyrights
	20. Figures (Examples)
	20.1 Example Standard Monitoring Unix
	20.2 Exaple Standard Monitoring Windows
	20.3 Example Process Monitoring
	20.4 Example File System Monitoring
	20.5 Example Log File Analysis
	20.6 Example SNMP-Traps
	20.7 Example Command Interface

